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Abstract. The quasi-relativistic harmonic oscillator bound states constructed by Znojil (1996
J. Phys. A: Math. Gen.29 2905) are investigated via a new methodical proposal. Compared
with those obtained by an anonymous referee (from a direct numerical integration method) of
Znojil’s paper, our results appear to be more favourable than those obtained by Znojil via quasi-
perturbative, variational, Hill-determinant and Riccati–Padé methods. Bound states with larger
angular momenta,l, are also constructed.

Among exactly soluble Hamiltonians exists the harmonic oscillator (HO) Hamiltonian

H(HO) = p2

2m
+

1

2
mω2r2. (1)

The equidistant form of its spectrum has attracted attention in quantum control theory [1]
and represents, in the view of [2], the ‘long sought-after dream’ of ‘steering wavepackets
into desired states’. Moreover, it fits, as proved by experimental observations, vibrational
excitations of molecules and some low-lying energy levels in atomic nuclei.

On the other hand, a free spin-0 field fulfils the Klein–Gordon equation

(E2 −H 2)9 = 0 H =
√
c2p2 +m2c4 (2)

or the Schr̈odinger formulation of it(E − H)9 = 0. Of course, there exist two admissible
solutions for a given momentump, i.e. positive and/or negative energy solutions. However,
we devote our work to the positive solution in the Schrödinger-formulated Klein–Gordon
equation. With the minimal coupling, a Lorentz four-vector HO potential is coupled as the
zero component of the four-vector potential, i.e.E −→ E − eA0 with eA0 = mω2r2/2.
Hence, a fully relativistic description ofH(HO) leads to the emergence of a quasi-relativistic
harmonic oscillator (QHO) Hamiltonian:

H(QHO) =
√
m2c4 + p2c2 + 1

2mω
2r2 (3)

which, in momentum representation, implies the one-dimensional Schrödinger equation

1

2
mh̄2ω2

[
− d2

dp2
+
l(l + 1)

p2

]
9(p) +

[√
m2c4 + p2c2 −mc2

]
9(p) = É9(p) (4)
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wherer2 = −h̄21p, p ∈ (0,∞), É is the binding energy andl = 0, 1, . . . denotes the
angular momentum quantum number. Of course, on asymptotically physical grounds, the
wavefunction9(p) satisfies the boundary conditions [3]

9(p) ≈

pl+1 for |p| � 1

exp(−νp3/2) ν =
√

8c

9m
(h̄ω)−1 for |p| � 1.

A rescale of the variablep throughp = √mh̄ωq would, in turn, lead to a transparent form of
the Schr̈odinger equation [3]. Strictly,[

−1

2

d2

dq2
+
l(l + 1)

2q2
+ V (q)

]
9nr,l(q) = εnr ,l9nr ,l(q)(5) (5)

whereεnr ,l = 2Énr ,l/(h̄ω),

V (q) = 1

α2
(VSRAO(q)− 1) (6)

VSRAO(q) =
√

1 +α2q2 (7)

α2 = h̄ω/(mc2), and the square-root anharmonic oscillator potential (7) simulates a quasi-
relativistic squeezing of the HO spectrum.

The transition from the parabolic HO well, in standard coordinate representation,
to the hyperbolic shapeVSRAO(q), in momentum representation, is claimed to prove
phenomenologically useful and methodically challenging. Znojil [3] has, therefore,
investigated several eligible (namely, perturbative, variational, Hill-determinant, and Riccati–
Pad́e) methods to construct its bound states. With the permission of an anonymous referee of
his paper, Znojil also reported (in table 2 of [3]) the referee’s results from direct numerical
integrations (DNI).

Whilst using a quasi-perturbation prescription (equation (11) in [3]), a loss of precision
occurred at ‘large’α = 1

2 (table 1(b) in [3]), upon which the anonymous referee remarked that
it may also cause a loss of the upper-bound character of the quasi-perturbation prescription.
In accordance with a second referee’s remark, being curable by a Padé-type resummation, the
loss of boundedness phenomenon may emerge at anyα.

To the best of our knowledge, the paper of Znojil [3] is the only one available in the
literature considering the QHO and, therefore, merits further consideration.

In this paper we formulate a new method to solve the Fourier-transformed Schrödinger
equation (4), withV (q) represented by (6). Our method consists of using 1/l̄ as an expansion
parameter, wherēl = l−β, l is a quantum number, andβ is a suitable shift introduced with the
main aim of avoiding the trivial case,l = 0. The spiritual soundness of ‘textbook’ perturbation
theory is therefore engaged. Hence the method should be called the pseudoperturbative shifted-
l expansion technique (PSLET).

With the noninteger (irrational) orbital angular momentuml̄, equation (5) reads{
−1

2

d2

dq2
+ Ṽ (q)

}
9nr,l(q) = εnr ,l9nr ,l(q) (8)

Ṽ (q) = l̄ 2 + (2β + 1)l̄ + β(β + 1)

2q2
+
l̄ 2

Q
V (q) (9)

whereQ is a constant that scales the potentialV (q) at the large-l limit and is set, for any
specific choice ofl andnr , equal tol̄ 2 at the end of the calculations [4–9].β is determined in
the following.
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Our systematic procedure begins by shifting the origin of the coordinate through

x = l̄ 1/2(q − qo)/qo (10)

whereqo is currently an arbitrary point given to perform Taylor expansions about, with its
particular value to be determined. Expansions about this point yield

1

q2
=
∞∑
n=0

(−1)n
(n + 1)

q2
o

xnl̄−n/2 (11)

V (x(q)) =
∞∑
n=0

(
dnV (qo)

dqno

)
(qox)

n

n!
l̄−n/2. (12)

It should be mentioned here that the scaled coordinate, equation (10), has no effect on the
energy eigenvalues, which are coordinate independent. It merely facilitates the calculations of
both the energy eigenvalues and eigenfunctions. It is also convenient to expandεnr ,l as

εnr ,l =
∞∑

n=−2

ε
(n)
nr ,l
l̄−n. (13)

Equation (8) thus becomes[
−1

2

d2

dx2
+
q2
o

l̄
Ṽ (x(q))

]
9nr,l(x) =

q2
o

l̄
εnr ,l9nr ,l(x) (14)

with

q2
o

l̄
Ṽ (x(q)) = q2

o l̄

[
1

2q2
o

+
V (qo)

Q

]
+ l̄ 1/2

[
−x +

V
′
(qo)q

3
ox

Q

]

+

[
3

2
x2 +

V
′′
(qo)q

4
ox

2

2Q

]
+ (2β + 1)

∞∑
n=1

(−1)n
(n + 1)

2
xnl̄−n/2

+q2
o

∞∑
n=3

[
(−1)n

(n + 1)

2q2
o

xn +

(
dnV (qo)

dqno

)
(qox)

n

n!Q

]
l̄−(n−2)/2

+β(β + 1)
∞∑
n=0

(−1)n
(n + 1)

2
xnl̄−(n+2)/2 +

(2β + 1)

2
(15)

where the prime ofV (qo) denotes the derivative with respect toqo. Equation (14) is the exact
Schr̈odinger-type equation for a one-dimensional anharmonic oscillator[

−1

2

d2

dx2
+

1

2
�2x2 +3o + P(x)

]
Xnr (x) = λnrXnr (x) (16)

whereP(x) is a perturbation-like term and3o is a constant. A simple comparison between
equations (14)–(16) implies

3o = l̄
[

1

2
+
q2
oV (qo)

Q

]
+

2β + 1

2
+
β(β + 1)

2l̄
(17)

λnr = l̄
[

1

2
+
q2
oV (qo)

Q

]
+

[
2β + 1

2
+

(
nr +

1

2

)
�

]
+

1

l̄

[
β(β + 1)

2
+ λ(0)nr

]
+
∞∑
n=2

λ(n−1)
nr

l̄−n

(18)

and

λnr = q2
o

∞∑
n=−2

ε
(n)
nr ,l
l̄−(n+1). (19)
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Equations (18) and (19) yield

ε
(−2)
nr ,l
= 1

2q2
o

+
V (qo)

Q
(20)

ε
(−1)
nr ,l
= 1

q2
o

[
2β + 1

2
+

(
nr +

1

2

)
�

]
(21)

ε
(0)
nr ,l
= 1

q2
o

[
β(β + 1)

2
+ λ(0)nr

]
(22)

ε
(n)
nr ,l
= λ(n)nr /q2

o n > 1. (23)

Hereqo is chosen to minimizeε(−2)
nr ,l

, i.e.

dε(−2)
nr ,l

dqo
= 0 and

d2ε
(−2)
nr ,l

dq2
o

> 0 (24)

which in turn gives, with̄l = √Q,

l − β =
√
q3
oV

′
(qo). (25)

Consequently, the second term in equation (15) vanishes and the first term adds a constant to
the energy eigenvalues.

The next leading correction to the energy series,l̄ε
(−1)
nr ,l

, consists of a constant term and
the exact eigenvalues of the unperturbed HO potential�2x2/2. The shifting parameterβ is
determined by choosinḡlε(−1)

nr ,l
= 0. Hence

β = −[ 1
2 + (nr + 1

2)�] (26)

where

� =
√

3 +
qoV

′′
(qo)

V
′
(qo)

. (27)

Then equation (15) reduces to

q2
o

l̄
Ṽ (x(q)) = q2

o l̄

[
1

2q2
o

+
V (qo)

Q

]
+
∞∑
n=0

v(n)(x)l̄−n/2 (28)

where

v(0)(x) = 1

2
�2x2 +

2β + 1

2
(29)

v(1)(x) = −(2β + 1)x − 2x3 +
q5
oV

′′′
(qo)

6Q
x3 (30)

and forn > 2

v(n)(x) = (−1)n(2β + 1)
(n + 1)

2
xn + (−1)n

β(β + 1)

2
(n− 1)x(n−2)

+

[
(−1)n

(n + 3)

2
+

q(n+4)
o

Q(n + 2)!

dn+2V (qo)

dqn+2
o

]
xn+2. (31)

Equation (14) thus becomes[
−1

2

d2

dx2
+
∞∑
n=0

v(n)l̄−n/2
]
9nr,l(x) =

[
1

l̄

(
β(β + 1)

2
+ λ(0)nr

)
+
∞∑
n=2

λ(n−1)
nr

l̄−n
]
9nr,l(x). (32)
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When setting the nodeless,nr = 0, wavefunctions as

90,l(x(q)) = exp(U0,l(x)) (33)

equation (32) is readily transformed into the following Riccati equation:

−1

2
[U

′′
(x) +U

′
(x)U

′
(x)] +

∞∑
n=0

v(n)(x)l̄−n/2 = 1

l̄

(
β(β + 1)

2
+ λ(0)0

)
+
∞∑
n=2

λ
(n−1)
0 l̄−n. (34)

Hereafter, we useU(x) instead ofU0,l(x) for simplicity, and the prime ofU(x) denotes the
derivative with respect tox. It is evident that this equation has as solution of the form

U
′
(x) =

∞∑
n=0

U(n)(x)l̄−n/2 +
∞∑
n=0

G(n)(x)l̄−(n+1)/2 (35)

where

U(n)(x) =
n+1∑
m=0

Dm,nx
2m−1 D0,n = 0 (36)

G(n)(x) =
n+1∑
m=0

Cm,nx
2m. (37)

Substituting equations (35)–(37) into (34) implies

− 1
2

∞∑
n=0

[U(n)
′
l̄−n/2 +G(n)

′
l̄−(n+1)/2]

− 1
2

∞∑
n=0

∞∑
p=0

[U(n)U(p)l̄−(n+p)/2 +G(n)G(p)l̄−(n+p+2)/2 + 2U(n)G(p)l̄−(n+p+1)/2]

+
∞∑
n=0

v(n)l̄−n/2 = 1

l̄

(
β(β + 1)

2
+ λ(0)0

)
+
∞∑
n=2

λ
(n−1)
0 l̄−n (38)

where the primes ofU(n)(x) andG(n)(x) denote derivatives with respect tox. Equating the
coefficients of the same powers ofl̄ andx, respectively (of course, the reverse would work
equally well), one obtains

− 1
2U

(0)
′ − 1

2U
(0)U(0) + v(0) = 0 (39)

U(0)
′
(x) = D1,0 D1,0 = −� (40)

and integration over dx yields

U(0)(x) = −�x. (41)

Similarly,

− 1
2[U(1)

′
+G(0)

′
] − U(0)U(1) − U(0)G(0) + v(1) = 0 (42)

U(1)(x) = 0 (43)

G(0)(x) = C0,0 +C1,0x
2 (44)

C1,0 = −B1

�
(45)

C0,0 = 1

�
(C1,0 + 2β + 1) (46)

B1 = −2 +
q5
o

6Q

d3V (qo)

dq3
o

(47)
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− 1
2[U(2)

′
+G(1)

′
] − 1

2

2∑
n=0

U(n)U(2−n) − 1
2G

(0)G(0) −
1∑
n=0

U(n)G(1−n) + v(2)

= β(β + 1)

2
+ λ(0)0 (48)

U(2)(x) = D1,2x +D2,2x
3 (49)

G(1)(x) = 0 (50)

D2,2 = 1

�

(
C2

1,0

2
− B2

)
(51)

D1,2 = 1

�

(
3

2
D2,2 +C0,0C1,0 − 3

2
(2β + 1)

)
(52)

B2 = 5

2
+
q6
o

24Q

d4V (qo)

dq4
o

(53)

λ
(0)
0 = − 1

2(D1,2 +C2
0,0) (54)

etc. Thus, one can calculate the energy eigenvalue and the eigenfunctions, from the knowledge
of Cm,n andDm,n, in a hierarchical manner. Nevertheless, the procedure just described
is suitable for systematic calculations using software packages (such as MATHEMATICA,
MAPLE, or REDUCE) to determine the energy eigenvalue and eigenfunction corrections up
to any order of the pseudoperturbation series.

It should be mentioned that the energy series, equation (13), could appear as convergent,
divergent or asymptotic. However, one can still calculate the eigenenergies to a very good
level of accuracy by forming the sophisticated Padé approximants to the energy series [11].
The energy series, equation (13), is calculated up toε

(8)
0,l /l̄

8 by

ε0,l = l̄ 2ε
(−2)
0,l + ε(0)0,l + · · · + ε(8)0,l /l̄

8 + O(1/l̄ 9) (55)

and with thePNN (1/l̄) andPN+1
N (1/l̄) Pad́e approximants it becomes

ε0,l [N,N ] = l̄ 2ε
(−2)
0,l + PNN (1/l̄) (56)

and

ε0,l [N,N + 1] = l̄ 2ε
(−2)
0,l + PN+1

N (1/l̄). (57)

Our strategy and prescription are therefore clear.
Let us now consider the Fourier transform of equation (4), with the rescaled variable

p = √mh̄ωq, represented by equations (5)–(7). The substitution of equation (6) in (26), for
nr = 0, implies

β = − 1
2(1 +�) � =

√
4 + 3α2q2

o

1 +α2q2
o

. (58)

Equation (25) thus reads

l +
1

2
(1 +�) = q2

o

√
1√

1 +α2q2
o

. (59)

Equation (59) is explicit inqo and evidently a closed-form solution forqo is hard to find,
although not impossible. However, numerical solutions are feasible. Onceqo is determined the
coefficientsCm,n andDm,n are obtained in a sequential manner. Consequently, the eigenvalues,
equation (55), and eigenfunctions, equations (35)–(37), are calculated in the same batch for
each value ofα andl.
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Table 1. PSLET results for ground-state energiesεo,o, whereK represents the firstK terms of
equation (54) and exact DNI results from [3].

K α = 1
100 α = 1

20 α = 1
10 α = 1

5

1 2.999 906 257 850 8 2.997 661 14 471 2.990 702 721 2.963 706 98
2 2.999 906 259 959 4 2.997 662 45 159 2.990 723 092 2.964 001 14
3 2.999 906 259 959 1 2.997 662 44 641 2.990 722 775 2.963 984 17
4 2.999 906 259 959 1 2.997 662 44 644 2.990 722 783 2.963 985 58
5 2.999 906 259 959 1 2.997 662 44 644 2.990 722 782 2.963 985 42
6 2.999 906 259 959 1 2.997 662 44 644 2.990 722 782 2.963 985 45
7 2.999 906 259 959 1 2.997 662 44 631 2.990 722 775 2.963 985 06
8 2.999 906 259 959 1 2.997 662 44 635 2.990 722 777 2.963 985 17
9 2.999 906 259 959 1 2.997 662 44 635 2.990 722 777 2.963 985 17

10 2.999 906 259 959 1 2.997 662 44 634 2.990 722 776 2.963 985 14
DNI — 2.997 662 44 644 2.990 722 782 2.963 985 44

α = 1
4 α = 1

3 α = 1
2 α = 2

1 2.944 289 62 2.904 543 2.804 82 1.9189
2 2.944 955 82 2.906 342 2.810 83 1.9331
3 2.944 899 04 2.906 100 2.809 51 1.9334
4 2.944 905 92 2.906 145 2.809 87 1.9323
5 2.944 904 81 2.906 135 2.809 77 1.9319
6 2.944 905 03 2.906 138 2.809 79 1.9322
7 2.944 903 79 2.906 132 2.809 78 1.9328
8 2.944 904 11 2.906 134 2.809 77 1.9329
9 2.944 904 11 2.906 134 2.809 77 1.9329

10 2.944 904 03 2.906 133 2.809 75 1.9315
DNI 2.944 904 99 2.906 136 2.809 786 1.932 334

In order to make remediable analysis of our results we have calculated the first ten terms of
the energy series. The effect of each term has been taken into account. We have also computed
the Pad́e approximantsε0,l [N,M] for N = 2, 3, 4 andM = 2, 3, 4, 5. Therefore, the stability
of the energy series and that of the sequence of Padé approximants are in point.

Table 1 shows PSLET results for the ground-state energiesε0,0, covering a wide range
of the anharmonicityα, along with the exact results from the DNI method, carried out by the
anonymous referee of [3]. To avoid exhaustive numbers of tables we do not list Znojil’s results.
However, we do refer to them when required. A comparison between PSLET and DNI results
implies excellent agreement. The nice trend of stability in the energy series (55) (i.e. a signal
of nice course of convergence.) is well pronounced. The effect of the higher-order corrections
on the first few terms of the energy series bears this out.

In contrast with Znojil’s results (table 1(b) in [3]) for ‘large’ α = 1
3 andα = 1

2, via a
quasi-perturbative prescription (equation (11) in [3]), there is no indication that our series will
blow up at higher orders and, by and large, our expansion parameter(1/l̄) is less than one
for all values ofα reported in the text. Of course, there is always the contribution from the
(K + 1) term, but so far our prescription has performed well. Whilst Znojil’s prescription
marks nice stability for smallα, severe oscillations of his series occur at low order, especially
for ‘large’ α = 1

2, causing, in effect, a breakdown in the bounded character of his prescription.
Although this phenomenon is curable by resummation tools such as the sophisticated Padé
approximants, as suggested by the second referee of [3]; however, in our opinion, this will not
dramatically cure the loss of precision in Znojil’s results (table 1(b) in [3]), as documented in
the following.
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Table 2. The effect of the angular momentum quantum numberl on convergence and precision for
α = 1

2 .

K l = 1 l = 5 l = 10 l = 20

1 4.569 573 10.977 406 1 17.963 301 722 29.948 955 412 735
2 4.575 998 10.981 520 1 17.965 505 044 29.949 880 189 612
3 4.575 031 10.981 360 3 17.965 487 822 29.949 881 669 238
4 4.575 173 10.981 349 8 17.965 484 484 29.949 881 347 421
5 4.575 167 10.981 352 9 17.965 484 566 29.949 881 340 115
6 4.575 155 10.981 352 8 17.965 484 596 29.949 881 340 512
7 4.575 164 10.981 352 7 17.965 484 595 29.949 881 340 559
8 4.575 161 10.981 352 7 17.965 484 595 29.949 881 340 559
9 4.575 161 10.981 352 7 17.965 484 595 29.949 881 340 559

10 4.575 162 10.981 352 7 17.965 484 595 29.949 881 340 559

Table 3. The effect of Pad́e approximants on convergence and precision.

ε0,0[N,M] α = 1
100 α = 1

10 α = 1
3 α = 2

ε0,0[2, 2] 2.999 906 259 959 1 2.990 722 78 2.906 14 1.9319
ε0,0[2, 3] 2.999 906 259 959 1 2.990 722 78 2.906 14 1.9323
ε0,0[3, 3] 2.999 906 259 959 1 2.990 722 78 2.906 14 1.9334
ε0,0[3, 4] 2.999 906 259 959 1 2.990 722 78 2.906 14 1.9325
ε0,0[4, 4] 2.999 906 259 959 1 2.990 722 78 2.906 13 1.9326
ε0,0[4, 5] 2.999 906 259 959 1 2.990 722 78 2.906 13 1.9326

Switching to alternative methods to provide independent checks of his numerical
predictions, Znojil used the Hill-determinant and Riccati–Padé methods. As a result of his
work using the Hill determinant, an onset of convergence is clearly manifested (table 3 in [3]),
but larger dimensions and/or an improved elementary convergence factor would be necessary
to reach the domain of more satisfactory numerical precision. Moreover, as a result of his
work using a slightly more complicated (compared with the Hill determinant) Riccati–Padé
method, the 11-dimensional Töplitz determinants offered very satisfactory precision (table 4 in
[3]). However, a typical bizarre characteristic of the Riccati–Padé method is well documented
[3, 12]. Namely, it leads to a number of clustered solutions, for a given value of the couplingα,
resulting from the existence of several eligible physical roots of the Hankel [12] or Töplitz [3]
determinants. Yet the ambiguity of these roots increases with the dimensional growth of the
determinants. Although clustering is a good indication that one is close to a physical root, one
has to make a decision on which of these roots is the best. So far, to the best of our knowledge,
a general method of establishing this property has not been found.

The effect of the angular momentum quantum numberl on the stability, and hence on
convergence and precision, is reported in table 2 forα = 1

2. Confidently, one concludes that
better convergence and more precise numerical results are obtained asl increases. A similar
effect should be expected for the nodal quantum numbernr ; l andnr have almost identical
effects on our pseudoperturbative expansion parameterl̄.

The stability of the sequence of Padé approximants (table 3) is fascinating. Although there
is no indicator that our series will blow up (table 1 reflects this fact), the effect of the Padé
approximants on precision is limited. For fixedα, say 1

2, more precision is obtained via Padé
approximants asl increases (table 4). Adhering to the conventional practice of perturbative
calculations (i.e. only a few terms of a ‘most useful’ perturbation series reveal the important
features of the solution before a state of exhaustion is reached), we list PSLET results (table 5)
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Table 4. The effect ofl and Pad́e approximants on convergence and precision forα = 1
2 .

ε0,l [N,M] l = 0 l = 1 l = 3

ε0,l [2, 2] 2.809 788 4.575 157 7.893 680
ε0,l [2, 3] 2.809 826 4.575 161 7.893 681
ε0,l [3, 3] 2.809 783 4.575 161 7.893 681
ε0,l [3, 4] 2.809 767 4.575 161 7.893 681
ε0,l [4, 4] 2.809 790 4.575 161 7.893 681
ε0,l [4, 5] 2.809 797 4.575 161 7.893 681

l = 5 l = 10 l = 20

ε0,l [2, 2] 10.981 352 490 17.965 484 570 29.949 881 340 088
ε0,l [2, 3] 10.981 352 767 17.965 484 596 29.949 881 340 530
ε0,l [3, 3] 10.981 352 715 17.965 484 595 29.949 881 340 562
ε0,l [3, 4] 10.981 352 712 17.965 484 587 29.949 881 340 559
ε0,l [4, 4] 10.981 352 712 17.965 484 595 29.949 881 340 559
ε0,l [4, 5] 10.981 352 712 17.965 484 595 29.949 881 340 559

Table 5. Comparison between PSLET, collecting the first six terms of the energy series, the
ε0,0[3, 3] Pad́e approximant and the results from DNI [3].

α K = 6 ε0,0[3, 3] DNI [3]

1
100 2.999 906 259 959 1 2.999 906 2 599 591 —
1
20 2.997 662 44 644 2.997 662 44 644 2.997 662 44 644
1
10 2.990 722 78 231 2.990 722 78 231 2.990 722 78 232
1
5 2.963 985 445 2.963 985 441 2.963 985 44 193
1
4 2.944 905 033 2.944 904 983 2.944 904 99 229
1
3 2.906 137 610 2.906 136 824 2.906 136 36 892
1
2 2.809 786 91 2.809 783 442 2.809 786 32 134
2 1.932 185 1.933 444 1.932 334 34 201

of the first six terms of our energy series with theε0,0[3, 3] Pad́e approximant. Compared with
those from DNI, our results are readily satisfactory.

To summarize, we have used a new methodical proposal to investigate the bound states
of the QHO. Using the perturbation expansion parameter 1/l̄, we have demonstrated that our
apparently artificial perturbation recipe, PSLET, is convincingly powerful and methodically
practical.

Perhaps it should be noted that for each entry in tables 1–5 one can construct the
wavefunction from the knowledge ofCm,n andDm,n. However, such a study lies beyond
the scope of our methodical proposal.

In addition to Znojil’s interpretation of the QHO Hamiltonian (3), that it leads, in
effect, to the formally correct relativistic Dirac equation, we have shown that it could
also represent a Klein–Gordon particle in a parabolic well. Precisely, the four-vector
potentialeA0 = −Ze2(3 − r2/a)/2a, or in shorteA0 = A + Br2, which represents an
improved approximation for a realistic pionic atom, hence the Hamiltonian in equation (3)
addresses the Klein–Gordon Hamiltonian for the potential of a homogeneously charged sphere
[13].

The applicability of our recipe extends beyond the present QHO model and its application
to other areas such as the following is in order: the eigenstates of a hydrogenic impurity in a
spherical quantum dot (QD) [14]; quasi-two-dimensional QD helium [15]; two-electron QD in
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a magnetic field [16]; excitons in a harmonic QD [17]; hydrogenic impurity or heavy excitons
in an arbitrary magnetic field [18, 19] etc.
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